Search results for " Tandem Pore Domain"

showing 6 items of 6 documents

A role for TASK2 channels in the human immunological synapse.

2020

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune p…

0301 basic medicineMaleCD3 ComplexImmunological SynapsesT cellCD3T-LymphocytesImmunologyCellGene ExpressionStimulationImmunological synapseAutoimmune Diseases03 medical and health sciencesJurkat CellsMice0302 clinical medicinePotassium Channels Tandem Pore DomainCell Line TumorGene expressionmedicineExtracellularImmunology and AllergyAnimalsHumansCells CulturedKv1.3 Potassium Channelbiologyβ-tubulin ; TASK2 ; immunological synapse ; dSTORM ; T cellCell MembraneDepolarizationIntermediate-Conductance Calcium-Activated Potassium ChannelsCell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurebiology.proteinCalciumFemale030215 immunologyEuropean journal of immunologyReferences
researchProduct

Intracellular fluoride influences TASK mediated currents in human T cells.

2019

The expression of Kv1.3 and KCa channels in human T cells is essential for maintaining cell activation, proliferation and migration during an inflammatory response. Recently, an additional residual current, sensitive to anandamide and A293, compounds specifically inhibiting currents mediated by TASK channels, was observed after complete pharmacological blockade of Kv1.3 and KCa channels. This finding was not consistently observed throughout different studies and, an in-depth review of the different recording conditions used for the electrophysiological analysis of K+ currents in T cells revealed fluoride as major anionic component of the pipette intracellular solutions in the initial studie…

0301 basic medicinePatch-Clamp TechniquesTime FactorsPotassium CompoundsT-LymphocytesImmunologyMagnesium ChlorideMembrane Potentials03 medical and health scienceschemistry.chemical_compoundFluorides0302 clinical medicinePotassium Channels Tandem Pore DomainPotassium Channel BlockersImmunology and AllergyHumansCells CulturedKv1.3 Potassium ChannelActivator (genetics)ChemistryPipetteAnandamideElectrophysiology030104 developmental biologyMembraneBiophysicsCell activationFluorideIntracellular030215 immunologyJournal of immunological methods
researchProduct

The potassium channels TASK2 and TREK1 regulate functional differentiation of murine skeletal muscle cells.

2015

Two-pore domain potassium (K2P) channels influence basic cellular parameters such as resting membrane potential, cellular excitability, or intracellular Ca2+-concentration [Ca2+]i. While the physiological importance of K2P channels in different organ systems (e.g., heart, central nervous system, or immune system) has become increasingly clear over the last decade, their expression profile and functional role in skeletal muscle cells (SkMC) remain largely unknown. The mouse SkMC cell line C2C12, wild-type mouse muscle tissue, and primary mouse muscle cells (PMMs) were analyzed using quantitative PCR, Western blotting, and immunohistochemical stainings as well as functional analysis includin…

0301 basic medicinemedicine.medical_specialtyPhysiologyCellular differentiationMuscle Fibers SkeletalMedizinDown-RegulationBiologyCell LineMembrane Potentials03 medical and health sciencesMyoblast fusionMicePotassium Channels Tandem Pore DomainInternal medicinemedicineMyocyteAnimalsHumansPatch clampMuscle SkeletalMyogenesisSkeletal muscleCell DifferentiationCell BiologyPotassium channelCell biologyUp-Regulation030104 developmental biologyEndocrinologymedicine.anatomical_structurePotassiumC2C12American journal of physiology. Cell physiology
researchProduct

Expression of p11 and Heteromeric TASK Channels in Rat Carotid Body Glomus Cells and Nerve Growth Factor–differentiated PC12 Cells

2020

Psychological stress activates the hypothalamus, augments the sympathetic nervous output, and elevates blood pressure via excitation of the ventral medullary cardiovascular regions. However, anatomical and functional connectivity from the hypothalamus to the ventral medullary cardiovascular regions has not been fully elucidated. We investigated this issue by tract-tracing and functional imaging in rats. Retrograde tracing revealed the rostral ventrolateral medulla was innervated by neurons in the ipsilateral dorsomedial hypothalamus (DMH). Anterograde tracing showed DMH neurons projected to the ventral medullary cardiovascular regions with axon terminals in contiguity with tyrosine hydroxyl…

MaleHistologyNerve Tissue ProteinsProximity ligation assayPC12 Cells03 medical and health sciencesPotassium Channels Tandem Pore Domain0302 clinical medicineGlomus cellmedicineAnimalsHomomericRats WistarAnnexin A2030304 developmental biologyCarotid Body0303 health sciencesChemistryEndoplasmic reticulumS100 ProteinsfungiArticlesImmunohistochemistryRatsCell biologymedicine.anatomical_structureNerve growth factorCytoplasmCarotid bodyAnatomySignal transduction030217 neurology & neurosurgeryJournal of Histochemistry & Cytochemistry
researchProduct

Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human

2007

Genomic imprinting is the epigenetic marking of gene subsets resulting in monoallelic or predominant expression of one of the two parental alleles according to their parental origin. We describe the systematic experimental verification of a prioritized 16 candidate imprinted gene set predicted by sequence-based bioinformatic analyses. We used Quantification of Allele-Specific Expression by Pyrosequencing (QUASEP) and discovered maternal-specific imprinted expression of the Kcnk9 gene as well as strain-dependent preferential expression of the Rarres1 gene in E11.5 (C57BL/6 3 Cast/Ei)F1 and informative (C57BL/6 3 Cast/ Ei) 3 C57BL/6 backcross mouse embryos. For the remaining 14 candidate impr…

MalePotassium ChannelsBiologyPolymorphism Single NucleotideGenomic ImprintingMiceChromosome 15Potassium Channels Tandem Pore DomainGeneticsAnimalsHumansEpigeneticsImprinting (psychology)AlleleMolecular BiologyGeneGenetics (clinical)GeneticsBase SequenceBrainComputational BiologySequence Analysis DNAGeneral MedicineDNA MethylationMice Inbred C57BLCpG siteDNA methylationCpG IslandsFemaleGenomic imprintingHuman Molecular Genetics
researchProduct

Mini-Review: Two Brothers in Crime – The Interplay of TRESK and TREK in Human Diseases

2021

Abstract TWIK-related spinal cord potassium (TRESK) and TWIK-related potassium (TREK) channels are both subfamilies of the two-pore domain potassium (K2P) channel group. Despite major structural, pharmacological, as well as biophysical differences, emerging data suggest that channels of these two subfamilies are functionally more closely related than previously assumed. Recent studies, for instance, indicate an assembling of TRESK and TREK subunits, leading to the formation of heterodimeric channels with different functional properties compared to homodimeric ones. Formation of tandems consisting of TRESK and TREK subunits might thus multiply the functional diversity of both TRESK and TREK …

endocrine systemPain syndromePotassium ChannelsGeneral NeuroscienceContext (language use)BiologyMini reviewFunctional diversityPotassium Channels Tandem Pore DomainNeuroinflammatory DiseasesHumansProtein Multimerizationhuman activitiesNeuroscienceNeuroscience Letters
researchProduct